Triterpenoids from Abies species

20.* Identification of new trinortriterpene methyl ketones in the products of alkaline degradation of total acids of *Abies sibirica* needles

V. V. Grishko, M. M. Shakirov, and V. A. Raldugin*

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent'eva, 630090 Novosibirsk, Russian Federation.
Fax: 007 (383 2) 35 4752. E-mail: root@orchem.nsk.su

Four new compounds were identified in a mixture of tetracyclic methyl ketones obtained by alkaline cleavage of acids of Siberian fir needles. Two of them correspond to natural acids of the 17,13-fridolanostane series of yet unknown structure.

Key words: triterpenoids; Siberian fir; two-dimensional NMR.

Previously, we described a new approach to the analysis of a complex natural mixture of triterpene acids from Siberian fir needles. This approach involves an alkaline treatment affording a simpler mixture of the corresponding neutral 25,26,27-trinorderivatives (methyl ketones), and each ketone corresponds to a pair of interconverting isomeric triterpene acids with the α-methyl-β-acylacrylic group in the molecule. The mixture of methyl ketones thus obtained contained at least 10 components (GLC), and four of them, viz., compounds 1-4, are known.2 In a continuation of the study of the composition of this mixture, we isolated its new components, diketone 5 and hydroxy ketones 6 and 7 using adsorption chromatography on SiO₂ and SiO₂— 5% AgNO3. In addition, using GLC and the NMR spectrum, we identified diketone 8, which is difficult to separate from the impurity of compound 4 described previously. This diketone is identical to the product of oxidation of hydroxy ketone 6 with pyridinium chlorochromate.

Hydroxy ketone 6 was identified by comparison of its ¹³C (Table 1) and ¹H NMR spectra with the spectra of the known³ ester 9; the TLC, GLC, and ¹H NMR spectroscopic data for diketone 5 coincided with those for a sample of this compound prepared by alkaline cleavage of the known methyl ester 10 (see Ref. 4).

Triterpene acids, which correspond to isolated trinorderivatives 5 and 6, are known as components of needles of Abies sibirica⁴ and seeds of A. firma,³ respectively. The natural precursor of diketone 8 studied has not yet been found among the triterpene acids of the Abies species.

The structure of hydroxy ketone 7 is proposed on the basis of spectral data. According to the high-resolution mass spectrum, it is the isomer of methyl ketone 6. Its

Treatment of hydroxy ketone 6 with HCl in MeOH—CHCl₃ results in gradual isomerization of 6 into 7 (¹H NMR).

Table 1. 13 C NMR spectra of compounds **6** and **9** (δ , $C = 20 \text{ mg mL}^{-1}$)

Atom	6	9	Атом	6	9
(1)	29.22 t	29.4	C(15)	36.68 t	36.
(2)	25.29 t	25.4	C(16)	38.15 t	38.
(3)	76.42 d	76.5	C(17)	46.27 s	46.
(4)	36.92 s	37.0	C(18)	24.77 q	24.
(5)	37.98 d	38.0	C(19)	22.06 q	22.
(6)	23.12 t	23.2	C(20)	38.40 d	38.
(7)	122.13 d	122.5	C(21)	15.60 q	15.
8)	145.94 s	146.0	C(22)	47.45 t	48
(9)	50.93 d	51.0	C(23)	209.20 s	202
(10)	34.71 s	34.8	C(24)	30.07 q	133
C(11)	28.05 t	28.1	C(28)	28.01 q	28.
C(12)	118.62 d	118.7	C(29)	22.85 q	23
C(13)	156.02 s	156.0	C(30)	25.83 q	25
C(14)	49.88 s	50.0			

molecule contains two carbon-carbon double bonds (13C NMR spectrum), which are not conjugated according to the UV spectrum. The 13C and 1H NMR spectral data (Table 2) are interpreted using ¹H-¹H (COSY), and ¹³C-¹H (COSY, COLOC) NMR. Thus, in the two-dimensional ¹H-¹H (COSY) NMR spectrum, along with cross-peaks arising due to proton coupling through two and three σ -bonds, the following cross-peaks caused by long-range spin-coupling were observed: $H(3)/H(1\beta)$, $H(3)/C(28)H_3$, $H(1\alpha)/C(19)H_3$, $C(7)H_2/H(11a)$, $C(7)H_2/H(11b)$, $C(30)H_3/H(15\beta)$, $C(18)H_3/H(16\alpha)$, and $C(21)H_3/H(22a)$. In the COLOC spectrum, the following cross-peaks were observed: 3 H(18)/C(16), C(17), C(20); 3 H(19)/C(1), C(5), C(9), C(10), C(11); 3 H(28)/C(4), C(5), C(29); 3 H(29)/C(4), C(5), C(28); and 3 H(30)/C(8), C(13), C(14), C(15).

^{*} For Part 19, see Ref. 1.

Table 2. ¹³C and ¹H NMR spectra of compound 7 (δ , J/Hz, C = 54 mg mL⁻¹)

Ato nun	m δ _C	δ_{H}	Ato	m δ _C nber	δ_{H}
1	29.46 t	1.49* (H(1β)); 1.53* (H(1α))	15	34.77 t	$1.50^{\circ} (H(15\alpha)); 1.52^{\circ} (H(15\beta))$
2	25.64 t	1.60*; 1.94 m	16	33.90 t	1.26 (ddd, H(16 β), $^{2}J = 12.0$, $^{3}J = 6.0$,
3	75.81 d	$3.416 \text{ (t, }^3J = 2.5)$			$^{3}J = 1.6$); 1.74 (dt, H(16 α), $^{2}J = 12.0$,
4	37.43 s				$^3J=7.5)$
5	44.65 d	1.51*	17	46.79 s	-
6	18.22 t	1.45*; 1.61*	18		0.911 (d, ${}^5J_{18.16\alpha} = 0.7$)
7	25.49 t	2.06*; 2.09*	19	18.95 q	$0.915 \text{ (d, } {}^{5}J_{19,1\alpha} = 0.5)$
8	134.58 s	_	20	38.01 d	2.08*
9	136.33 s		21	15.92 q	0.84 (dd, ${}^{3}J = 6.5$, ${}^{4}J_{21.22a} = 1.2$)
10	36.88 s	_	22	47.19 t	$0.84 \text{ (ud, } 9 = 0.3, 9_{21,22a} = 1.2)$ 2.14* (H(22b)); 2.70 (m, H(22a))
11	26.18 t	2.49 (ddt, H(11b)); 2.54 (ddt, H(11a),	23	209.63 s	- (H(220)), 2.70 (III, H(22a))
		$^{2}J = 20.0, ^{3}J_{11a,12} = 6.0; ^{5}J_{11a,7a} =$	24	30.23 q	2.10 s
		${}^{5}J_{11a,7b} = 1.6, {}^{5}J_{11b,7a} = {}^{5}J_{11b,7b} = 3)$	28	27.89 q	0.96 s
12	116.30 d	$5.366 \text{ (dd, }^{3}J_{12.11a} = 6.0, ^{3}J_{12.11b} = 2.2)$	29	22.05 q	0.85 s
13	155.29 s		30	23.46 q	$0.89 \text{ (d, }^5J_{30.158} = 0.4)$
14	47.59 s	_	50	25.40 q	σ.σ. (α, σ.σ., 15β σ.π.)

^{*} These values were obtained from the two-dimensional ¹³C-¹H COSY NMR spectrum.

Natural acid 11, the hypothetical precursor of methyl ketone 7, has not yet been found among the acids from *Abies sibirica* needles. The percentages of methyl ketones 1—8 in the initial mixture are 17, 5, 32, 7, 4, 16, 2, and 4%, respectively. Other components of the mixture have not been isolated yet.

Experimental

The melting points were measured with a Kofler block. The IR spectra were recorded with a UR-20 spectrometer, and the UV spectrum of compound 7 was recorded with a Specord UV-VIS spectrophotometer. The NMR spectra were recorded with a Bruker AM-400 instrument in CDCl₃ (tetramethylsilane was used as the internal standard) using standard Bruker programs for recording two-dimensional COSY and COLOC spectra. The EI mass spectra (70 eV) were obtained with a Finnigan MAT 8200 instrument. Optical rotations were measured with a Polamat A polarimeter at 580 nm in CHCl₃.

GLC was carried out with a Chrom-5 chromatograph (carrier gas N_2 , 5% SE-30 on Chromaton N, 2500×3 mm column, linear temperature program from 210 to 265 °C, 2 deg min⁻¹).

Chromatography was carried out on KSK silica gel, the substance: sorbent ratio was ca. 1:20, and a hexane—ether mixture was used as the eluent (from 10 to 40% of Et₂O). Silufol plates were used for TLC, and the compounds were detected by spraying with concentrated H₂SO₄. The initial total mixture of methyl ketones was prepared from the acidic fraction of the extract of Siberian fir needles using the procedure described previously.²

Separation of methyl ketones. The mixture of methyl ketones (4.83 g) was chromatographed on SiO₂ affording fractions I–V (0.81, 0.75, 0.43, 2.38, and 0.39 g, respectively). Fraction I is pure methyl ketone 1. Compound 5 (0.19 g) and a mixture of components 4 and 8 (0.51 g, 2:1, according to ¹H NMR) were isolated by repeated chromatography of fraction II. Crystallization of fraction III from hexane gave compound 2 (0.24 g), and chromatography of the mother liquor yielded methyl ketone 7 (0.10 g). Chromatography of fraction IV on SiO₂ impregnated with AgNO₃ (5%) gave successively compound 3 (1.56 g) and compound 6 (0.78 g) (a 9:1 chloroform—hexane mixture was used as the eluent). Fraction V contained unidentified components.

Diketone 5. Crystals, m.p. 117.5—118 °C (hexane), $[α]^{20}_{580}$ +137.3° (*c* 0.67). Mass spectrum, m/z (I_{rel} (%)): 396.30336 [M]⁺ (66). Calculated for $C_{27}H_{40}O_2$: 396.31846. ¹H NMR, δ: 0.83 (d, 3 H, C(21)H₃, $J_{20,21}$ = 6.0 Hz); 0.86, 1.03, 1.06, and 1.10 (all s, 4 Me); 2.08 (s, 3 H, C(24)H₃); 4.48 and 4.73 (both narrow m, 1 H, H₂C=C).

Diketone 5 was prepared from ester 10 according to the published procedure⁴ in a 90% yield.

Hydroxy ketone 6. Oil, $[\alpha]^{15}_{580}$ -130.7° (c 2.74). IR (CCl₄), v/cm⁻¹: 1720 (C=O); 3620 (OH). Mass spectrum, m/z ($I_{\rm rel}$ (%)): 398.31736 [M]⁺ (63). Calculated for C₂₇H₄₂O₂: 398.31846. ¹H NMR, δ: 0.85 (d, 3 H, C(21)H₃, $J_{20,21}$ = 6.0); 0.897, 0.904, 0.907, 0.95, and 1.15 (all s, 5 Me); 2.08 (s, 3 H, C(24)H₃); 2.75 (br.d, 1 H, H(22a), $J_{22a,22b}$ = 12); 3.49 (narrow m, 1 H, H(3)); 5.44 (dd, 1 H, H(12), J = 8.4 and 2.4 Hz); 5.61 (br.d, 1 H, H(7), J = 5.5 Hz). The ¹³C NMR spectral data are presented in Table 1.

Hydroxy ketone 7. Oil, $[\alpha]^{15}_{580}$ +36° (c 0.5). IR (CCl₄), v/cm^{-1} : 1710 (C=O); 1620, 3030 (C=C); 3630 (OH). UV (EtOH): no significant absorption in the region from 210 to 400 nm. Mass spectrum, m/z (I_{rel} (%)): 398.31657 [M]⁺ (28). Calculated for $C_{27}H_{42}O_2$: 398.31846. The ¹³C and ¹H NMR spectral data are presented in Table 2.

Synthesis of diketone 8. Pyridinium chlorochromate (0.20 g) was added to a solution of hydroxy ketone **6** (0.04 g) in CH₂Cl₂ (2 mL) at ambient temperature and the mixture was stirred at 20 °C for 24 h. After the usual workup, compound **8** (0.03 g) was isolated as an oil. ¹H NMR, δ : 0.86 (d, 3 H, C(21)H₃, $J_{20,21} = 6.5$ Hz); 0.90, 1.06, 1.07, 1.08, and 1.16 (all s, 5 Me); 2.08 (s, 3 H, C(24)H₃); 2.67—2.76 (m, 2 H, C(2)H₂); 5.44 (dd, 1 H, H(12), J = 8.5 and 3.5 Hz); 5.65 (m, 1 H, H(7)).

Isomerization of compound 6. Three drops of a saturated solution of HCl in MeOH were added to a solution of hydroxy ketone **6** (0.13 g) in CHCl₃ (5 mL), and the mixture was allowed to stay at *ca.* 20 °C in the dark for 4 h. After the usual workup and chromatography on SiO₂, a mixture of methyl ketones **6** and **7** (0.06 g) in the ratio of 2:1 (¹H NMR) and a mixture of two less polar products (0.05 g), whose IR spectrum have no bands of carbonyl groups and which are presumably ketals of compounds **6** and **7**, were obtained.

References

- V. A. Raldugin, M. M. Shakirov, T. P. Kukina, and A. G. Druganov, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 2792 [Russ. Chem. Bull., 1996, 45, 2651 (Engl. Transl.)].
- V. V. Grishko, I. Yu. Bagryanskaya, Yu. V. Gatilov, M. M. Shakirov, and V. A. Raldugin, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 748 [Russ. Chem. Bull., 1996, 45, 709 (Engl. Transl.)].
- S. Hasegawa, T. Miura, N. Kaneko, Y. Hirose, and Y. Iitaka, Tetrahedron, 1987, 43, 1775.
- V. A. Raldugin, M. M. Shakirov, T. V. Leibyuk, and S. A. Shevtsov, Khim. Prir. Soedin., 1991, 511 [Chem. Nat. Compd., 1991, 444 (Engl. Transl.)].

Received August 5, 1996